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Problem 1. Consider the points A = (1, 4, 2), B = (−1, 3, 5) and C = (3, 5, 7) in the
three-dimensional linear space R3.

(1). The fourth point D is defined by the condition that the points A,B,C,D are the

consecutive vertices of a certain parallelogram. Find the coordinates of the point D.

Space for your solution:

(2). Give an explicit equation that defines the plane in which the parallelogram ABCD

lies.

Space for your solution:
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(3). Compute the area of the parallelogram ABCD.

Space for your solution:

(4). Find the distance from the point P = (1, 1, 1) to the plane that passes through the

points A,B,C. (Hint: compute the volume of the parallelepiped generated by the vectors
−→
BA,

−−→
BC, and

−−→
BP . Then use the area found in the previous subproblem.)

Space for your solution:
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Problem 2. The region R on the (x, y)-plane is given as the solution set of the system{
x2 + y2 ≤ 1
x+ y ≥ 0

(1). Sketch this region in (x, y)-coordinate system.

Space for your solution:

(2). Find a system of equations or inequalities that describes all the interior points of

the region R relative to the (x, y)-plane.

Space for your solution:

(3). Find a system of equations or inequalities that describes all the boundary points of

the region R relative to the (x, y)-plane.

Space for your solution:
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(4). Find all the critical points of the function f(x, y) = y + x2 which are interior to the

region R.

Space for your solution:

(5). Find all the critical points of the function f(x, y) = y + x2 on the boundary of the

region R.

Space for your solution:
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(6). Find the maximum and the minimum values of the function f(x, y) = y + x2 on the

region R, and the corresponding points of maxima and minima.

Space for your solution:

(7). Draw the contour diagram of the function f(x, y) = y + x2 to confirm your work

above.

Space for your solution:

6



Problem 3. Compute the work of the force
−→
F = −

−→
k when moving along the path γ

parameterized by 
x = t
y = cos(t)
z = sin(t)

with t ∈ [0, π
2
].

Space for your solution:
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