Suffolk County Community College Michael J. Grant Campus

Department of Mathematics

Thursday, December 5, 2024 (returned Tuesday, December 10, 2024)

MAT 129 College Precalculus

Final Exam

Instructor:

Name: Alexander Kasiukov

Office: Suffolk Federal Credit Union Arena, Room A-109

Phone: (631) 851-6484

Email: kasiuka@sunysuffolk.edu Web Site: http://kasiukov.com

	Please print the requested information in the spaces provided:
Student: Name:	
Student Id:	
Email:	include to receive the final grade via email ONLY if you are not getting email updates

- Any violation of academic integrity on this exam will result in a failing grade for the whole course.
- Notes and books are permitted, but cannot be shared.
- Graphing calculators, smartwatches, computers, cell phones and any other communication-capable devices are prohibited. Their mere presence in the open even without use is a violation of academic integrity.
- You will not receive full credit if there is no work shown, even if you have the right answer. Please don't attach additional pieces of paper: if you run out of space, please ask for another blank final.

Problem 1. Suppose
set $A = \{Paris, Ottawa, Toronto, Berlin, Madrid\}$ and
set $B = \{Canada, France, Germany, Spain\}$. Define a function "Country" to have domain
A, range B and graph
$\left\{ (Paris, France), (Ottawa, Canada), (Toronto, Canada), (Berlin, Germany), (Madrid, Spain) \right\}.$
(1). What is Country(Berlin)?
Space for your solution:
(2). What is the image of the function Country?
Space for your solution:
(3). Can the function Country be inverted? If yes, find the domain, range and graph of the inverse. If no, explain why.
Space for your solution:

Problem 2. Consider the function with the range \mathbb{R} , defined by the formula

$$f(x) = \frac{2x^3 - 5x^2 + 7}{x^2 - 4x + 4}$$

for all $x \in \mathbb{R}$, for which the above formula makes sense.

(1). What is the domain of the function f?

Space for your solution:

(2). Find all the vertical asymptotes of the graph of f(x).

Space for your solution:

(3). Find the y-intercept of f(x).

Space for your solution:

(4). Perform long division of the numerator of $f(x)$ by its denominator. Using the results of the long division, write $f(x)$ as a sum of a polynomial and a proper fraction.
Space for your solution:
(5). Find the equation of the oblique asymptote of $f(x)$.
Space for your solution:
(6). Find all the intersections of the graph of $f(x)$ with the oblique asymptote. (Only the x -coordinates of the intersections are needed.)
Space for your solution:
(7). Use the Rational Roots Theorem to find a rational root of $2x^3 - 5x^2 + 7$.
Space for your solution:

Space for your	r solution:		
(0)			
	e the result of the pre-		
Mark all v	vertical, horizontal and	oblique asymptotes,	
Mark all v		oblique asymptotes,	
Mark all v	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	
Mark all v with the a	vertical, horizontal and asymptotes and the axis	oblique asymptotes,	

(8). Use the result of the previous subproblem to find all x-intercepts of the function f(x).

Problem 3.	Solve the equation $(\log_7 x) - 1 = \log_7(x+1)$.
Space for your solut:	on:

Problem 4.	Solve the	equation	$\cos(t)$	$+\sin(t)$	=0.
------------	-----------	----------	-----------	------------	-----

Γ	Space for your solution:
	opace jo. god. octaven.
1	