Suffolk County Community College
 Michael J. Grant Campus
 Department of Mathematics

Spring 2022

MAT 124
 Pre-Calculus I

Final Exam: Solutions and Answers

Instructor:

Name: Alexander Kasiukov
Office: Suffolk Federal Credit Union Arena, Room A-109
Phone: (631) 851-6484
Email: kasiuka@sunysuffolk.edu
Web Site: http://kasiukov.com

Problem 1. Suppose

- set $A=\{$ flu, headache, fever, allergy, Lime disease $\}$;
- set $B=\{$ Aspirin, Relenza, Claritin, Doxycycline $\}$;
- $\operatorname{set} C=$

$$
\{(\text { flu, Relenza }),(\text { headache, Aspirin }),(\text { fever, Aspirin })
$$

(allergy, Claritin), (Lime disease, Doxycycline) $\}$.
(1). Does the tripple $T=(A, B, C)$ constitute a binary relation? Why?
Space for your solution:

Yes, the tripple $T=(A, B, C)$ constitutes a binary relation because $C \subseteq A \times B$.
(2). Does the tripple $T=(A, B, C)$ constitute a function? Why?

Space for your solution:
Yes, the tripple $T=(A, B, C)$ constitutes a function. First, we verified in the previous sub-problem that T is a binary relation. Further, for every medical condition in A there is one and only one medication in B which is linked to that condition by being in C. Thus T is a binary relation that passes the vertical line test, which is to say T is a function.
(3). What is T (headache)?

Space for your solution:
By definition, T (headache) is the second element of the only ordered pair in the graph C of the function T that has "headache" as its first element. In our case, such a pair is the pair (headache, Aspirin), therefore T (headache) $=$ Aspirin.
(4). What is the image of T ?

Space for your solution:
The question makes sense because T is a function. By definition,

$$
\begin{aligned}
& \text { Im } \mathrm{T}=\{\mathrm{T}(x): x \in \operatorname{Dom} T\}= \\
& \{\mathrm{T}(\text { flu }), \mathrm{T} \text { (headache), } \mathrm{T}(\text { fever }), \mathrm{T} \text { (allergy), } \mathrm{T}(\text { Lime disease })\}= \\
& \quad\{\text { Relenza, Aspirin, Aspirin, Claritin, Doxycycline }\}=B .
\end{aligned}
$$

In particular, T is an on-to function.
(5). Is T invertable? If yes, find (the domain, the range, and the graph of) the inverse. If no - or the question itself does not make sense - explain why.

Space for your solution:
The question makes sense because T is a function. However, this function is not invertible because it is not one-to-one. Indeed,

$$
\begin{gathered}
\mathrm{T}(\text { headache })=\text { Aspirin }=\mathrm{T}(\text { fever }), \\
\text { while } \\
\text { headache } \neq \text { fever. }
\end{gathered}
$$

Problem 2. Consider the function with the range \mathbb{R}, defined by the formula

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x^{2}+2 x+1}
$$

for all $x \in \mathbb{R}$, for which the above formula makes sense.
(1). With the usual conventions in effect, what is the domain of the function f ?

Space for your solution:
The above formula makes sense if and only if the denominator of the fraction is not zero.
The denominator is zero if and only if $x^{2}+2 x+1=0 \Leftrightarrow(x+1)^{2}=0 \quad \Leftrightarrow x=-1$. Therefore the domain of the function f is

$$
\operatorname{Dom} f=\{x \in \mathbb{R}: x \neq-1\} .
$$

(2). Find all x-intercepts of the function $f(x)$.

Space for your solution:

The x-intercepts of the function $f(x)$ are the roots of its numerator $x^{3}-x^{2}+x-1$. The Rational Roots Theorem states that any rational root of this polynomial will be in the set:

$$
\left\{\frac{\text { divisor of }-1}{\text { divisor of } 1}\right\}=\{1,-1\} .
$$

Substituting these into $x^{3}-x^{2}+x-1$ yields the root $x=1$. Once that root is found, the Polynomial Remainder Theorem of Bézout guarantees divisibility of $x^{3}-x^{2}+x-1$ by $x-1$:

$$
\begin{array}{rr}
\\
x-1 & \begin{array}{r}
x^{2}+0 x+1 \\
x^{3}-x^{2}+x-1 \\
x^{3}-x^{2} \\
\\
\end{array} \begin{array}{r}
x-1 \\
x-1 \\
0
\end{array}
\end{array}
$$

Since the resulting quotient $x^{2}+0 x+1=x^{2}+1$ has no real roots, $x=1$ is the only real root of the polynomial $x^{3}-x^{2}+x-1$. Since $x=1$ is in the domain of the function $f(x)$, it is the only x-intercept of the function $f(x)$.
(3). Express $f(x)$ as a sum of a polynomial and a proper rational function.

Space for your solution:
The long division: $x ^ { 2 } + 2 x + 1 \longdiv { x - 3 } \begin{array} { r } { x ^ { 3 } - x ^ { 2 } + x - 1 } \end{array}$

$$
\begin{array}{r}
\frac{x^{3}+2 x^{2}+x}{-3 x^{2}+0 x-1} \\
\frac{-3 x^{2}-6 x-3}{6 x+2}
\end{array}
$$

gives:

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x^{2}+2 x+1}=x-3+\frac{6 x+2}{x^{2}+2 x+1} .
$$

(4). Based on the results of the previous sub-problem, determine the oblique asymptote of the function $f(x)$ and the value of x corresponding to the intersection of $f(x)$ with that asymptote.

Space for your solution:
Given that

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x^{2}+2 x+1}=x-3+\frac{6 x+2}{x^{2}+2 x+1},
$$

we can conclude that $y=x-3$ is the oblique asymptote of $f(x)$ and the intersection in question corresponds to the value of x which turns the above fraction into zero:

$$
6 x+2=0 \quad \Leftrightarrow \quad x=-\frac{1}{3} .
$$

(5). Sketch the graph of the function $f(x)$.

Space for your solution:
Using the results of the previous sub problems, we get:

Problem 3. In this problem, we will consider functions $3+\log _{2} x$ and $\log _{2}(3+x)$.
(1). Solve the equation $3+\log _{2} x=\log _{2}(3+x)$ analytically.

$$
\begin{aligned}
& \text { Space for your solution: } \\
& 3+\log _{2} x=\log _{2}(3+x) \Leftrightarrow 3=\log _{2}(3+x)-\log _{2} x \Leftrightarrow\left\{\begin{array}{l}
3=\log _{2} \frac{3+x}{x} \\
3+x>0 \\
x>0
\end{array}\right. \\
& \left\{\begin{array} { l }
{ 2 ^ { 3 } = 2 ^ { \operatorname { l o g } _ { 2 } \frac { 3 + x } { x } } } \\
{ x > - 3 } \\
{ x > 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 8 = \frac { 3 + x } { x } } \\
{ x > 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 8 x = 3 + x } \\
{ x > 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
7 x=3 \\
x>0
\end{array} \Leftrightarrow x=\frac{3}{7} .\right.\right.\right.\right.
\end{aligned}
$$

(2). Using the technique of graph transformations, sketch the graphs of these functions in the same (x, y)-coordinate system. Is this sketch consistent with your solution of part (1)?

Space for your solution:
The graph of $3+\log _{2} x$ is the result of shifting $\log _{2} x$ up by 3 , and $\log _{2}(3+x)$ is the result of shifting $\log _{2} x$ left by 3 :

These two resulting grapsh do intersect at the point consistent with the previous solution $x=\frac{3}{7}$.

