Suffolk County Community College
 Michael J. Grant Campus Department of Mathematics

Spring 2022

MAT 124
 Pre-Calculus I

Final Exam

Instructor:

Name: Alexander Kasiukov
Office: Suffolk Federal Credit Union Arena, Room A-109
Phone: (631) 851-6484
Email: kasiuka@sunysuffolk.edu
Web Site: http://kasiukov.com

Please print the requested information in the spaces provided:
Student:
Name: \square
Student Id:

Email:
include to receive the final grade via email ONLY if you are not getting email updates

- Notes and books are permitted on this exam.
- Graphing calculators, smartwatches, computers, cell phones and any other communication-capable devices are prohibited. Their mere presence in the open (even without use) is a sufficient reason for an immediate dismissal from this exam with a failing grade.
- You will not receive full credit if there is no work shown, even if you have the right answer. Please don't attach additional pieces of paper: if you run out of space, please ask for another blank final.

Problem 1. Suppose

- set $A=\{$ flu, headache, fever, allergy, Lime disease $\}$;
- set $B=\{$ Aspirin, Relenza, Claritin, Doxycycline $\}$;
- $\operatorname{set} C=$

$$
\begin{aligned}
& \{(\text { flu , Relenza }),(\text { headache, Aspirin }),(\text { fever, Aspirin }), \\
& \\
& \text { (allergy, Claritin), (Lime disease, Doxycycline) }\} .
\end{aligned}
$$

(1). Does the tripple $T=(A, B, C)$ constitute a binary relation? Why?
\square
(2). Does the tripple $T=(A, B, C)$ constitute a function? Why?

Space for your solution:
(3). What is T (headache)?
\square
(4). What is the image of T ?

Space for your solution:

(5). Is T invertable? If yes, find (the domain, the range, and the graph of) the inverse. If no - or the question itself does not make sense - explain why.

[^0]Problem 2. Consider the function with the range \mathbb{R}, defined by the formula

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x^{2}+2 x+1}
$$

for all $x \in \mathbb{R}$, for which the above formula makes sense.
(1). With the usual conventions in effect, what is the domain of the function f ?

Space for your solution:
(2). Find all x-intercepts of the function $f(x)$.

Space for your solution:
(3). Express $f(x)$ as a sum of a polynomial and a proper rational function.

Space for your solution:
(4). Based on the results of the previous sub-problem, determine the oblique asymptote of the function $f(x)$ and the value of x corresponding to the intersection of $f(x)$ with that asymptote.

[^1](5). Sketch the graph of the function $f(x)$.

Space for your solution:

Problem 3. In this problem, we will consider functions $3+\log _{2} x$ and $\log _{2}(3+x)$.
(1). Solve the equation $3+\log _{2} x=\log _{2}(3+x)$ analytically.

Space for your solution:
(2). Using the technique of graph transformations, sketch the graphs of these functions in the same (x, y)-coordinate system. Is this sketch consistent with your solution of part (1)?

Space for your solution:

[^0]: Space for your solution

[^1]: Space for your solution

