Suffolk County Community College
 Michael J. Grant Campus
 Department of Mathematics

Wednesday, May 11, 2022

MAT 125
 Pre-Calculus II

Final Exam: Solutions and Answers

Instructor:

Name: Alexander Kasiukov
Office: Suffolk Federal Credit Union Arena, Room A-109
Phone: (631) 851-6484
Email: kasiuka@sunysuffolk.edu
Web Site: http://www.kasiukov.com

Problem 1. Consider the expression $\arccos (\cos (-4))$.
(1). Draw $-4, \cos (-4)$ and $\arccos (\cos (-4))$ in the same picture with the unit circle, showing how they are interconnected.

Space for your solution:

(2). Use the above picture to express $\arccos (\cos (-4))$ without any trigonometric functions.

Space for your solution:
It is clear from the above picture that the length of the angle in question, when added to 4 , should equal the length of the full circle 2π. Furthermore, given its positivity, it must be:

$$
\arccos (\cos (-4))=2 \pi-4
$$

Problem 2. Solve the equation $\cos (2 \theta)=1+\sin \theta$.

$$
\begin{aligned}
& \text { Space for your solution: } \\
& \cos (2 \theta)=1+\sin \theta \Leftrightarrow \text { double angle formula for } \cos \Rightarrow 1-2(\sin \theta)^{2}=1+\sin \theta \\
& \Leftarrow \text { subtract } 1 \text { from both sides } \Rightarrow-2(\sin \theta)^{2}=\sin \theta \Leftarrow \text { divide both sides by } \sin \theta \Rightarrow \\
& {\left[\begin{array} { l }
{ \operatorname { s i n } \theta = 0 } \\
{ - 2 \operatorname { s i n } \theta = 1 }
\end{array} \Leftrightarrow \left[\begin{array}{l}
\exists n \in \mathbb{Z}: \theta=\pi n \\
\sin \theta=-\frac{1}{2}
\end{array} \Leftrightarrow\right.\right.} \\
& {\left[\begin{array} { l }
{ \exists n \in \mathbb { Z } : \theta = \pi n } \\
{ \exists n \in \mathbb { Z } : \theta = \operatorname { a r c s i n } (- \frac { 1 } { 2 }) + 2 \pi n } \\
{ \exists n \in \mathbb { Z } : \theta = \pi - \operatorname { a r c s i n } (- \frac { 1 } { 2 }) + 2 \pi n }
\end{array} \Leftrightarrow \left[\begin{array}{l}
\exists n \in \mathbb{Z}: \theta=\pi n \\
\exists n \in \mathbb{Z}: \theta=-\frac{\pi}{6}+2 \pi n \\
\exists n \in \mathbb{Z}: \theta=\pi+\frac{\pi}{6}+2 \pi n
\end{array} \Leftrightarrow\right.\right.} \\
& \qquad\left[\begin{array}{l}
\exists n \in \mathbb{Z}: \theta=\pi n \\
\exists n \in \mathbb{Z}: \theta=-\frac{\pi}{6}+2 \pi n \\
\exists n \in \mathbb{Z}: \theta=\frac{7 \pi}{6}+2 \pi n
\end{array} \Leftrightarrow\right.
\end{aligned}
$$

Problem 3. Solve the equation $\cot (t)=\sin (t)$.

$$
\begin{aligned}
& \text { Space for your solution: } \\
& \cot (t)=\sin (t) \Leftarrow \text { definition of } \cot (t) \Rightarrow \frac{\cos (t)}{\sin (t)}=\sin (t) \\
& \Leftarrow \text { multiply both sides by } \sin (t) \text {, but remember that it cannot be zero } \Rightarrow \\
& \left\{\begin{array} { l }
{ \operatorname { c o s } (t) = (\operatorname { s i n } (t)) ^ { 2 } } \\
{ \operatorname { s i n } (t) \neq 0 }
\end{array} \Leftrightarrow \text { Pythagorean identity } \Rightarrow \left\{\begin{array}{l}
\cos (t)=1-(\cos (t))^{2} \\
\sin (t) \neq 0
\end{array} \Leftrightarrow\right.\right. \\
& \left\{\begin{array} { l }
{ (\operatorname { c o s } (t)) ^ { 2 } + \operatorname { c o s } (t) - 1 = 0 } \\
{ t \neq \pi \cdot n , n \in \mathbb { Z } }
\end{array} \Leftrightarrow \text { Quadratic formula } \Rightarrow \left\{\begin{array}{l}
\cos (t)=\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot(-1)}}{t \neq \pi \cdot n, n \in \mathbb{Z}^{2 \cdot 1}} \Leftrightarrow
\end{array} \Leftrightarrow\right.\right. \\
& \left\{\begin{array}{l}
\cos (t)=\frac{-1 \pm \sqrt{5}}{2} \\
t \neq \pi \cdot n, n \in \mathbb{Z}
\end{array} \Leftarrow \text { Cosine cannot equal } \frac{-1-\sqrt{5}}{2}<-1 . \Rightarrow\left\{\begin{array}{l}
\cos (t)=\frac{-1+\sqrt{5}}{2} \\
t \neq \pi \cdot n, n \in \mathbb{Z}
\end{array} \Leftrightarrow\right.\right. \\
& t= \pm \arccos \left(\frac{-1+\sqrt{5}}{2}\right)+2 \cdot \pi \cdot n, n \in \mathbb{Z} .
\end{aligned}
$$

Problem 4. In this problem, we will study $\cos (\arctan (y))$.
(1). Suppose $\theta \in[0, \pi]$ and $\tan (\theta)=-2$. Draw $-2, \theta$ and $\cos (\theta)$ in the unit circle.

Space for your solution:

(2). Using the above picture, find $\cos (\theta)$.

Space for your solution:
By definition, $\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$. Since we know $\tan (\theta)$ and are trying to find $\cos (\theta)$, we should express $\sin (\theta)$ in terms of these two functions. Solving the Pythagorean identity $(\cos (\theta))^{2}+(\sin (\theta))^{2}=1$ for the $\sin (\theta)$, we get $\sin (\theta)= \pm \sqrt{1-\left((\cos (\theta))^{2}\right.}$. The given fact that $\theta \in[0, \pi]$ implies that the $\sin (\theta)$ is positive: $\sin (\theta)=\sqrt{1-\left((\cos (\theta))^{2}\right.}$. Substituting this expression for $\sin (\theta)$ into the definition of $\tan (\theta)$, we get

$$
\tan (\theta)=\frac{\sqrt{1-\left((\cos (\theta))^{2}\right.}}{\cos (\theta)}
$$

Substituting the known value of $\tan (\theta)=-2$, we get the following equation for $\cos (\theta)$:

$$
\begin{gathered}
-2=\frac{\sqrt{1-\left((\cos (\theta))^{2}\right.}}{\cos (\theta)} \\
\Leftrightarrow \quad-2 \cos (\theta)=\sqrt{1-\left((\cos (\theta))^{2}\right.} \quad \Leftrightarrow \quad\left\{\begin{array}{c}
4(\cos (\theta))^{2}=1-\left((\cos (\theta))^{2}\right. \\
\cos (\theta)<0
\end{array}\right.
\end{gathered} \Leftrightarrow
$$

(3). Find $\cos (\arctan (-2))$. More specifically, find an expression of this quantity that does not use any trigonometric functions. Can the work done for the previous sub-problem be used? To what extent?

Space for your solution:

The angle θ in the previous sub-problem was in the interval $[0, \pi]$, but $\arctan (-2)$ must be in the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Thus the value of the cos we need here corresponds to the x-coordinate of the other point of intersection of the tilted line with the unit circle in the same picture as above:

The only difference is the sign: $\cos (\arctan (-2))=\frac{1}{\sqrt{5}}$.
(4). For an arbitrary real number y, find $\cos (\arctan (y))$. More specifically, find an expression of this quantity that does not use any trigonometric functions.

$$
\begin{aligned}
& \text { Space for your solution: } \\
& \text { This is a generalization of the previous problem. Denote } x=\cos (\arctan (y)) \text {. Then, from } \\
& \text { the similarity of triangles in the above picture, we get the equation: } y= \pm \frac{\sqrt{1-x^{2}}}{x} \Leftrightarrow \\
& y \cdot x= \pm \sqrt{1-x^{2}} \Leftrightarrow x^{2} \cdot y^{2}=1-x^{2} . \Leftrightarrow x^{2}\left(y^{2}+1\right)=1 \Leftrightarrow x^{2}=\frac{1}{y^{2}+1} \Leftrightarrow x= \pm \sqrt{\frac{1}{y^{2}+1}} \\
& \Leftrightarrow \text { Since } \arctan (y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text {, we know that } x>0 . \Rightarrow x=\sqrt{\frac{1}{y^{2}+1}}=\frac{1}{\sqrt{y^{2}+1}} .
\end{aligned}
$$

