Suffolk County Community College
 Michael J. Grant Campus Department of Mathematics

Wednesday, May 11, 2022
MAT 125
Pre-Calculus II

Final Exam

Instructor:

Name: Alexander Kasiukov
Office: Suffolk Federal Credit Union Arena, Room A-109
Phone: (631) 851-6484
Email: kasiuka@sunysuffolk.edu
Web Site: http://www.kasiukov.com

Please print the requested information in the spaces provided:
Student:
Name: \square
Student Id:

Email:
include to receive the final grade via email ONLY if you are not getting email updates

- Notes and books are permitted on this exam.
- Graphing calculators, smartwatches, computers, cell phones and any other communication-capable devices are prohibited. Their mere presence in the open (even without use) is a sufficient reason for an immediate dismissal from this exam with a failing grade.
- You will not receive full credit if there is no work shown, even if you have the right answer. Please don't attach additional pieces of paper: if you run out of space, please ask for another blank final.

Problem 1. Consider the expression $\arccos (\cos (-4))$.
(1). Draw $-4, \cos (-4)$ and $\arccos (\cos (-4))$ in the same picture with the unit circle, showing how they are interconnected.

Space for your solution:
(2). Use the above picture to express $\arccos (\cos (-4))$ without any trigonometric functions.

Space for your solution:

Problem 2. Solve the equation $\cos (2 \theta)=1+\sin \theta$.

Space for your solution:

Problem 3. Solve the equation $\cot (t)=\sin (t)$.

Space for your solution:

Problem 4. In this problem, we will study $\cos (\arctan (y))$.
(1). Suppose $\theta \in[0, \pi]$ and $\tan (\theta)=-2$. Draw $-2, \theta$ and $\cos (\theta)$ in the unit circle.

Space for your solution:
(2). Using the above picture, find $\cos (\theta)$.

Space for your solution:
(3). Find $\cos (\arctan (-2))$. More specifically, find an expression of this quantity that does not use any trigonometric functions. Can the work done for the previous sub-problem be used? To what extent?

Space for your solution:
(4). For an arbitrary real number y, find $\cos (\arctan (y))$. More specifically, find an expression of this quantity that does not use any trigonometric functions.

[^0]
[^0]: Space for your solution:

