Suffolk County Community College Michael J. Grant Campus Department of Mathematics

Wednesday, May 11, 2022

MAT 125 Pre-Calculus II

Final Exam

Instructor:

Name: Alexander Kasiukov Office: Suffolk Federal Credit Union Arena, Room A-109 Phone: (631) 851-6484 Email: kasiuka@sunysuffolk.edu Web Site: http://www.kasiukov.com

Student: Name:	Please print the requested information in the spaces provided:
Student Id:	
Email:	include to receive the final grade via email ONLY if you are not getting email updates

- Notes and books are permitted on this exam.
- Graphing calculators, smartwatches, computers, cell phones and any other communication-capable devices are prohibited. Their mere presence in the open (even without use) is a sufficient reason for an immediate dismissal from this exam with a failing grade.
- You will not receive full credit if there is no work shown, even if you have the right answer. Please don't attach additional pieces of paper: if you run out of space, please ask for another blank final.

Problem 1. Consider the expression $\arccos(\cos(-4))$.

(1). Draw -4, $\cos(-4)$ and $\arccos(\cos(-4))$ in the same picture with the unit circle, showing how they are interconnected.

Space for your solution:

(2). Use the above picture to express $\arccos\left(\cos(-4)\right)$ without any trigonometric functions.

Problem 2. Solve the equation $\cos(2\theta) = 1 + \sin \theta$.

Space for your solution:

Problem 3. Solve the equation $\cot(t) = \sin(t)$.

Problem 4. In this problem, we will study $\cos(\arctan(y))$.

(1). Suppose $\theta \in [0, \pi]$ and $\tan(\theta) = -2$. Draw -2, θ and $\cos(\theta)$ in the unit circle.

Space for your solution:

(2). Using the above picture, find $\cos(\theta)$.

(3). Find $\cos(\arctan(-2))$. More specifically, find an expression of this quantity that does not use any trigonometric functions. Can the work done for the previous sub-problem be used? To what extent?

Space for your solution:

(4). For an arbitrary real number y, find $\cos(\arctan(y))$. More specifically, find an expression of this quantity that does not use any trigonometric functions.