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Problem 1. Solve the equation ln(x)− 3 = ln(x+ 2).

Space for your solution:

Problem 2. In this problem, we will consider functions (log7 x)− 1 and log7(x+ 1).

(1). Solve the equation (log7 x)− 1 = log7(x+ 1).

Space for your solution:

(2). By transforming the graph of log7 x, sketch the graphs of these functions in the same
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(x, y)-coordinate system. Is this sketch is consistent with your solution of part (1)?

Space for your solution:

Problem 3. Solve the equation 52x = 1
3x−1 .

Space for your solution:

Problem 4. Solve the equation 2x−2 = 2x + 3.

Space for your solution:
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Problem 5. Consider the system of linear equations:


x1 + x2 − 2x3 + x4 + 3x5 = 1
2x1 − x2 + 2x3 + 2x4 + 6x5 = 2
3x1 + 2x2 − 4x3 − 3x4 − 9x5 = 3

(1). Perform the downward Gauss-Jordan method on the augmented matrix of the above
system.

Space for your solution:

(2). Obtain the reduced row echelon form of the augmented matrix of the original linear
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system (i.e. perform the upward Gauss-Jordan method on the augmented matrix, obtained
in the previous subproblem).

Space for your solution:

(3). Find a particular solution of the original system of linear equations and a system of
fundamental solutions of the associated homogeneous system.

Space for your solution:

5


