

Suffolk County Community College
Michael J. Grant Campus
Department of Mathematics

Spring 2025

MAT 120
College Algebra and Trigonometry
Final Exam

Instructor:

Name: Alexander Kasiukov
Office: Suffolk Federal Credit Union Arena, Room A-109
Phone: (631) 851-6484
Email: kasiuka@sunysuffolk.edu
Web Site: <http://kasiukov.com>

Please print the requested information in the spaces provided:

Student:

Name:

Student Id:

Email:

include to receive the final grade via email ONLY if you are not getting email updates

- *Any violation of academic integrity on this exam will result in a failing grade for the whole course.*
- *Notes and books are permitted, but cannot be shared.*
- *Graphing calculators, smartwatches, computers, cell phones and any other communication-capable devices are prohibited. Their mere presence in the open — even without use — is a violation of academic integrity.*
- *You will not receive full credit if there is no work shown, even if you have the right answer. Please don't attach additional pieces of paper: if you run out of space, please ask for another blank final.*

Problem 1. Solve the equation $\ln(x) - 3 = \ln(x + 2)$.

Space for your solution:

Problem 2. In this problem, we will consider functions $(\log_7 x) - 1$ and $\log_7(x + 1)$.

(1). Solve the equation $(\log_7 x) - 1 = \log_7(x + 1)$.

Space for your solution:

(2). By transforming the graph of $\log_7 x$, sketch the graphs of these functions in the same

(x, y) -coordinate system. Is this sketch is consistent with your solution of part (1)?

Space for your solution:

Problem 3. Solve the equation $5^{2x} = \frac{1}{3^{x-1}}$.

Space for your solution:

Problem 4. Solve the equation $2^{x-2} = 2^x + 3$.

Space for your solution:

Problem 5. Consider the system of linear equations:
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 1 \\ 2x_1 - x_2 + 2x_3 + 2x_4 + 6x_5 = 2 \\ 3x_1 + 2x_2 - 4x_3 - 3x_4 - 9x_5 = 3 \end{cases}$$

(1). Perform the downward Gauss-Jordan method on the augmented matrix of the above system.

Space for your solution:

(2). Obtain the reduced row echelon form of the augmented matrix of the original linear

system (i.e. perform the upward Gauss-Jordan method on the augmented matrix, obtained in the previous subproblem).

Space for your solution:

(3). Find a particular solution of the original system of linear equations and a system of fundamental solutions of the associated homogeneous system.

Space for your solution: