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Chapter 1

Foreword

᾿Εν ἀρχῇ ἦν ὁ λόγος. . .

[In the beginning was the Word . . . ]
John 1:1

The aim of these notes is to introduce you to C++ programming language, and
I want to say a couple of general words about programming and languages first.

Any language can be seen as a way to describe a world. A large leap forward
comes with realization that the world described is the world created. Allowing
one to execute the source code , computer programming makes that crucial idea
deceptively obvious, to the extent that we don’t pause in awe when we say that
we “build ” our programs, instead of merely writing their source code. . .

However, the world sprung up inside of a physical computer by the code you
write must come alive not when you run it on a machine, but when you just
imagine it in your head. The fact that correct C++ code can be modeled by an
electrical process in a silicon-based physical device is just a lucky coincidence. If
you don’t imagine a different — more immediate, visceral and intuitive — model
of the world you are creating as you write, read and edit your code1, you are
robbing yourself of the meaning and pleasure that comes with it, making it all but
impossible to learn the subject.

The concept of a model is made precise in mathematical logic . A single logical theory
can have many different models that could reveal different aspects of the theory itself. This
is studied in the area of logic called model theory .

1.1. If you want to get serious. . .

Although not required for this class, there are several things you should do if
you want to get serious about programming. I list them below in the order of
urgency, starting with the most pressing one.

1When a variable is introduced, think of a box that can be filled; when a constant is used,
imagine a box with a lid that once sealed cannot be reopened, etc. . . .

3



4 Foreword

1.1.1. Get C++ on Your Computer

If you have a Windows computer, you can follow the Guide for Windows. If
you have a Mac, you can use the Guide for Mac. If you have a Unix, e.g. Linux,
you probably already know what to do. . .

If you take the next suggestion (about command line) to heart, you don’t need to torture
yourself with all the installation steps for the Visual Studio Code, outlined in the Guide for
Windows. To use C++ on a command line, you only need a good text editor, a compiler
and a debugger.

1.1.2. Use Command Line

This recommendation is as much — if not more so — about not doing than it
is about doing something. Do not learn to rely on any integrated develop-
ment environment (IDE), such as Visual Studio, or any other. The computers
we have in the classroom have Visual Studio preinstalled, configured and ready to
use. While it gives some degree of comfort and reassurance, an integrated develop-
ment environment hides many important steps behind its “Run” button and thus
impedes full understanding of the craft, fostering bad habits that don’t translate
well to large and complicated projects.

Command line interface is the best professional way to communicate with a
computer. It is done via console , also know as the “terminal” or the “command
prompt”. On Windows, you can get the command prompt by pressing the ⊞

+ R ; then typing “cmd” and pressing Enter . On a Mac, press + Space ;
type “Terminal” and press Enter . On Linux, you probably already live on the
command prompt. . .

In these notes, I will show all the commands using the syntax of a Bash
command prompt. Bash is the default on Linux and Mac, and you can get it
on Windows by installing Cygwin. Most of the Bash commands related to this
course can be used verbatim on Windows and Mac command prompts, at least
as long as you install the GNU toolchain (g++ compiler and gdb debugger) as
suggested in the above mentioned Windows Guide. (Sometimes you may need to
use /Option:Value on Windows in place of the -Option Value syntax used in
Bash.)

Command line is the tool that can help you understand the life cycle of a C++
program . You should learn how to do — one by one — all the steps that take the
source code to an executable2:

• use a text editor to write and edit the source code files3;

• use the preprocessor to see the expanded source code , obtained by ap-
plying all the macro directives and #include’s to the original source4;

2I am just mentioning these things here, we will go over these steps in more detail later.
3Making as many source files as needed; as an example, assume we made a single file named

main.cpp
4For example, for the single source file main.cpp and for the GNU compiler g++, this can be

achieved by issuing the following command on the command prompt:
g++ -E main.cpp > main.i

http://kasiukov.com/farmingdale/windows.pdf
http://kasiukov.com/farmingdale/mac.pdf
https://www.cygwin.com/
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• apply the compiler to the source code files (expanded or not) to make the
individual assembly files5;

• apply the assembler to the assembly files to make the individual (relocat-
able) object files6;

• apply the linker to all the object files in your project to form a single
executable7;

ld \
-dynamic-linker \

/lib64/ld-linux-x86-64.so.2 \
/usr/lib/x86_64-linux-gnu/crt1.o \

-L /usr/lib/gcc/x86_64-linux-gnu/14 \
main.o \

-lm -lc -lstdc++ \
-o main

Figure 1. For your amusement: full linker command on author’s computer.

• use the debugger to step through the executable to diagnose and correct
runtime errors8;

• once the program is ready, run the program as its user would.

1.1.3. Automate the Build Process

In our class, we will stay in the shallow waters of C++ development with
projects rarely involving more than a couple of separate files. However, any se-
rious production has many moving parts, making it necessary to automate and
document the build process with a single build script. I would like to suggest that
you start using building scripts early — as soon as your projects involve more than
one file. I will probably show you how to do automated builds with the help of
GNU Make9.

5Continuing from where we left it in the previous footnote, compilation to assembly can be
done with

g++ -S main.i
— or, if starting directly from unexpanded source code, with g++ -S main.cpp — resulting in
the assembly file main.s

6Continuing again from where we left it in the previous footnote, assembly into object file
can be done with

g++ -c main.s
— or, if combined with compilation step, via g++ -c main.cpp or g++ -c main.i — resulting
in file main.o

7Again, starting at the place where the previous step ended, we can do the linking with
g++ main.o -o main

However, that would involve a bit of cheating, since the g++ command itself is doing quite a bit
of heavy lifting. To reveal what is really happening, one should use the linker ld command with
all its options listed explicitly. See the Figure 1 for all the gory details.

8To enable debugging, the executable must be compiled with the -g flag, as in
g++ -g main.cpp -o main

Once it is done, the debugging can be started with
gdb ./main

9But I don’t promise we get to it. . .

https://www.gnu.org/software/make/
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1.1.4. Use Version Control

Version control is another “must have” of software development. By retaining
the full history of project evolution, version control systems allow

• to write new code without the risk of breaking the old one;

• implement, track and revert changes;

• collaborate across large teams of developers by permitting individual devel-
opers to work simultaneously without interfering with each other;

• maintain institutional history and culture of code development by providing
mechanism for code attribution and review.

Learning to use a version control system is certainly outside of the scope of this
class, but I highly recommend that you look into it, specifically using Git for the
task. . .

https://git-scm.com/


Chapter 2

Review

2.1. The Roots of C++

2.1.1. Unix and C

C++ is rooted in the earlier language called C [2]. It is impossible to un-
derstand C++ without getting some sense of C first. C was invented by Dennis
Ritchie in 1972 at Bell Labs, to support the efforts of Ken Thompson in porting
the UNIX operating system to PDP-11. The first incarnation of UNIX was written
in the assembly language specific to the PDP-7 computer10.

Figure 2. Ken Thompson (left) and Dennis Ritchie (right).

When Thompson decided to move UNIX to PDP-11, he was looking for a
language that would be close enough to the physical computer to make it both
easy to implement and suitable for writing an operating system in it, yet far
enough from it to make porting programs from one computer to another feasible.

2.1.2. Von Neumann Machine

C was written to run on von Neumann machine . The von Neumann ma-
chine is an abstraction of a real computer characterized by von Neumann ar-
chitecture , introduced by John von Neumann in 1945 [1]. This architecture is
defined by having single addressable memory shared by both the programs and
the data. Von Neumann machine provides the stage for C (and C++) programs
to live and run. We will explore it in more detail later. Von Neumann machine

10PDP-7 was already old by that time, which probably was one of the reasons it was available
as a playground for the new system’s development.

7
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Figure 3. John von Neumann.

has proven11 to be the happy middle ground between a physical computer and the
abstract environments of higher-level languages.

2.1.3. C++ and Its Place

C++ language was invented by Bjarne Stroustrup in early 1980s as an ex-
tension of C. At that time, C was already a very popular language proven to be

Figure 4. Bjarne Stroustrup.

useful far outside of its original domain. The use of C in the far broader realm
than operating system development exposed limitations of its expressive power
in modeling state and behavior of real life objects. The aim of C++ was to
mitigate just that with object-oriented paradigm. As a result, C++ extends C
in the direction of the “abstract” side of the programming languages continuum.

While C++ is trying to keep the connection with the underlying basics of the
von Neumann architecture, it is a trying task, as every new iteration of the C++
standard is pushing it farther away from the physical level, almost succeeding by
now in making it C++ a high-level language. Yet at the same time the ability
of C++ to open up and reconfigure its own intestines leaves open the possibility
of reconnecting it back to that almost-lost basic C level, making C++ unique in
the world of programming languages. Even though it takes more and more work
as the C++ Standards Committee is producing new specifications, C++ can be
still viewed as an arbitrary level language.

11In no small part — thanks to C and C++.
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2.2. Expressions

The most basic unit12 of C++ code is an expression . Expressions may have
values and side effects . Every time you write an expression in your code, make
sure you understand what value and effect, if any, your expression has.

2.2.1. The main() function

All standalone13 C and C++ programs must include a main() function . Thus
the simplest C++ program is this14:

int main()
{
}

What a function is in general will be addressed later in these notes. For now it
suffices to say that functions may be either built-in — like sizeof15 or defined in
the code — like the main() function above.

Regardless of whether a function is built-in or defined in the code, it can be
called in the code. The main() function is special not only because it must be
there, but also because it is implicitly called by the operating system when the
program’s executable is loaded.

2.2.2. Objects and Expressions

We live in the world made of objects, and those objects can sometimes be
modeled inside of computer code. Even though the word object means something
more specific in the context of object-oriented programming languages, we will
use it for now in its more colloquial sense to refer to any entity that can be
represented in code.

An expression is a string of characters in the code describing a particular
object. When an expression describes a specific object, we say that the expression
evaluates to that object, or, put it differently, that the object in question is the
value of the expression.

The above is a first pass at the definition of an expression. We will later revisit it to
add additional possibilities for what an expression may be. Some of those yet-to-be discussed
expressions will qualify as expressions without evaluating to an object. Those expressions are
called void expressions.

12I don’t use building block here only because the word block means something specific in the
context of C and C++.

13We are assuming for now that the source file in question is not a part of a bigger project.
14Depending on compiler and compilation flags used, this may or may not produce warnings as

you compile it. Regardless of those, what you see is a formally correct — even though completely
useless — program.

15The sizeof is a bit special, so it is formally not a function but a pseudo-function, but that
distinction is not important at the moment.
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2.2.3. Literals

For example, two expressions 8 and 5+3 both evaluate to the integer number
8. Let’s focus on the class of expressions exemplified by the first one of these,
namely the 8.

A single token of code directly representing a value stored in the source of the
program is called a literal expression , or literal for short. A literal occupies
space in the source code, but does not have any other presence anywhere else
in the computer memory16. It cannot be recalled elsewhere in the code without
repeating the same literal representation.

The 8 is an example of a literal. If you want to use number 8 in some other
place of your program, you must write 8 in your code again.

2.2.4. Functions, Operations, Operators and Call Expres-
sions

It is hard to talk about expressions and functions one at a time because
they are so tightly intertwined. These notes are a review and not an introduction
of these concepts; I will use this fact as an excuse for using functions before we
formally introduce them. To simplify this brief foray into the functions territory,
I will use only operations to illustrate my point.

Let’s depart from C++ and talk about mathematical functions for a moment.
A function is a way or method for converting inputs into outputs. Conceptually
speaking, functions and operations are the same thing, just written in a different
notation. When a function is written in prefix notation , it looks like the familiar
sin(45◦). But the arithmetic operations, like 3 + 5, are functions too! We are just
more used to writing 3+5 instead of +(3, 5) — but both of these expressions mean
8 and can be used interchangeably. The way of writing 3 + 5 is called the infix
notation . So, one can say that an operation is simply a function written in the
infix notation.

The prefix notation is more general. In mathematics and C++ alike, it can be
used with functions having more than two parameters17. In C++ context, there
is one more aspect that makes prefix notation more general than the infix one:
(prefix-denoted) functions can be defined, while (infix-denoted) operations cannot,
so that we are limited to those operations that are built-in. Those pre-defined C++
operations are called operators .

Jumping ahead, standard operators of C++, such as +, -, *, = and even the parentheses
() — can be overloaded.

Consider the expression 5 + 3 that evaluates to 8. The first expression is
an example of a function call expression . Those expressions evaluate to the
result of the function when that function is applied to the objects specified by the

16There is an exception to that general statement. String literals, being constant arrays of
characters, actually occupy specific place in computer memory. We will talk about it in more
detail later.

17While the expressions like 3 + 5+ 7 in the infix notation seem to allow multiple parameters
as well, formally speaking they represent repeated use of the corresponding binary function. So,
in reality, 3 + 5 + 7 = (3 + 5) + 7, even if it is usually written without parentheses. Thanks to
associativity of addition, the omission of parentheses does not create the ambiguity in this case,
unlike other situations like (a/b)/c ̸= a/(b/c).
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constituent expressions “plugged into” the function at hand. In our example, the
constituent expressions are the literals 5 and 3, and the function is the addition
operation. We now have an important principle: function call expressions
construct (compound) expressions from other (constituent) expressions.

2.2.5. PRValues

We can now try to define what an expression means in general, using as a
production rule the following definition: an expression is either a literal, or a
function call expression constructed from other expressions18. Limiting
our “seed” expressions to literals is too restrictive: there are other types of things
we can use as well, but before discussing those more general things, let’s take the
simple case first.

The expressions we just defined are a subclass of a slightly more general (but
still narrow) class of expressions, called prvalues . Prvalues represent objects
whose identity is transient and fully subsumed by their state .

The term “prvalue” stands for pure right-hand value. There is a long history associated
with this terminology. Originally — in the early versions of C — there were two terms:
“lvalue” and “rvalue”. Back then, life was simple and “lvalue” was a shorthand for “left-
hand value”, meaning an expression that could appear on the left and on the right side of
the assignment operator (like a variable name x). Similarly, “rvalue” stood for “right-hand
value” and described an expression that could appear only on the right side of an assignment
operator, (like a literal 8 or a function call made from literals, such as 5 + 3). C++ and
the later versions of C piled up a lot of extra complexity on top of those simple concepts,
shifting the meaning of the terms lvalue and rvalue quite a bit. Now the term “lvalue” is
reinterpreted as “locator value”, but the “rvalue” (and its derived narrower variant “prvalue”)
were not reinterpreted in a similar way. So, perhaps a better way of describing what “prvalue”
stands for would be something like: an expression of the kind that resembles right-hand value
from the old days.

2.2.6. Object Declarations and LValues

In addition to prvalues, expressions may represent objects that are stored in
the computer memory. Stored objects have their own identity independent from
their current state, and may be recalled and used somewhere else in the program.
Expressions describing such objects are called lvalues , meaning locator values19.

The simplest kind of an lvalue expression is an identifier . An identifier is a
name of a specific object. Any sequence of letters, digits and underscore symbols
starting with a letter or underscore symbol, which is not a reserved word of the

18This is an example of a recursive production rule. As in the case of any recursion, it must
have a base case that serves as the “seed”, or the starting point of the recursive build process.
Here, such a seed is the literal expression.

19As mentioned in the remark at the end of the previous section, it used to mean left-hand
value.
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language, can serve as an identifier20. C++ is case-sensitive, so the identifier
user_input is not the same as USER_INPUT.

Every identifier must be declared before it can be used. A declaration
statement creates an object in the world described by the code and gives it
a unique name — that very identifier — by which that object will be recalled in
the subsequent code.

We will not define the meaning of the word statement here. Instead, we will build the
concept of a statement incrementally throughout the course of studying C++.

2.2.7. Type and Type Declarations

A declaration statement in C++ must state the type of the identifier being
introduced. For example, a declaration statement for an integer identifier can look
like this:

int i;

In the above snippet of code, the int is the type declaration , and the i is the
identifier .

Broadly speaking, computer programming languages are classified as dynamically typed
and statically typed . In a dynamically typed language, such as Javascript, values have types
(e. g. 5 is an integer and 3.14 is a float) but the identifiers themselves are typeless:

// Javascript:
let x = 5; // x holds an integer 5
x = 3.14; // now the same x contains a float
x = "Hello"; // finally the x contains a string

On the other hand, in statically typed languages — such as C and C++ — identifiers them-
selves have types.

If one thinks of an identifier as a box with a label, a dynamically typed language has
boxes of standard size, large enough to contain any object of that language. On the other
hand, a statically typed language has different types of boxes varying according to their size
and shape.

The simplest objects in C++ (as well as in other programming languages) are
integer and floating point numbers. There are many different built-in types for
both of those categories21. They all share one fundamental property: the amount
of space occupied by a single number does not depend on that number’s
value and is determined by that number’s type alone. So, for instance,
an integer number 5 takes the same space as the integer number 100. Each type
allocates some fixed number of binary digits for every number of that type. The
difference between various types of numbers boils down to three characteristics:

1. whether it is an integer or a float;
20The identifiers starting with underscore, e.g. _start, are often used by the compiler and

the libraries for their internal identifiers and should be avoided when naming new identifiers
in the code. However, one can use those built-in compiler-provided identifiers. For instance,
most compilers will implicitly declare the identifier __func__ and store the name of the current
enclosing function in it.

21described, for instance, at https://en.cppreference.com/w/cpp/language/types.html

https://en.cppreference.com/w/cpp/language/types.html
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2. the specific number of bits each number of that type occupies;

3. whether (for integers) it is a signed or an unsigned number.

How many bits are occupied by any number (or, more generally, object) of a
particular type may depend on the architecture used22. That architecture-specific
information is known at compile time and can be determined within code using
the sizeof pseudo-function . In contrast with a regular functions, sizeof can
be used with an argument being either a type, as in sizeof( int ), or an object
of a particular type, as in sizeof( 5 )23. The sizeof returns the size in bytes,
and the sizeof( char ) is always one.

2.2.8. Value Categories

When an object is created by its identifier declaration, that object’s state can
be explicitly specified. Such specification is called initialization . The code

int i = 8;

creates an integer number, called i, and makes that number equal to 8. This
particular code constructs an object in a particular state.

Whether a given expression is an lvalue or a prvalue is a characteristic called the
value category . In addition to those two, there is another one, called xvalue
which we will discuss later. There are also two more categories (glvalue and
rvalue) which are constructed by combining the three mentioned earlier in various
ways.

To summarize, a prvalue is a state of an object without an identity, and an
lvalue is an object that has both a state and an identity.

2.2.9. Side Effects of Expressions

Besides evaluating to a particular object, an expression may also have a side
effect . Side effect of an expression is the full set of changes in the states of
objects directly or indirectly involved in that expression resulting from evaluation
of that expression. In the next section we describe the most important and familiar
example of an operator with a side effect. But while we are discussing side effects,
let’s also describe what an expression statement with side effect is.

An object, or — more formally — an expression cannot appear in a C++
program by itself. Rather, it has to be included as a part of a larger statement.
The simplest way to form a statement from an expression is to put the semicolon
“;” after the expression. In this case, the object the expression evaluates to is
discarded, and the only point of doing it at all is the side effect of the expression
at hand. In other words, expression statements are made solely for the sake

22Many classic C types, like int, are architecture-dependent, but beginning with C99 (with
#include <stdint.h>) and C++11 (with #include <cstdint>), compiler understands the so-
called “fixed width” types, like int32_t, which are the same size on all platforms where they are
available. Note, however, that the char type is always 1 byte long.

23There is another way in which sizeof differs from a usual function: an array does not decay
to a pointer when given as an argument to sizeof, so that sizeof( a ) returns the combined
size of all elements of the array a, rather than the size of the pointer a.
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of their side effect. The following is a program with an expression statement
which actually does not have any side effect (and is thus completely useless, while
correct):

int main(){
5;

}

In the above, the 5 is an expression that evaluates to the number 5, and the “5;”
is the resulting expression statement.

2.2.10. The Assignment Operator

The assignment operator looks like a = b. Unlike the mathematical concept
described by the same notation, the assignment is not a claim of a being equal
to b. In addition, a = b is categorically not the same as b = a, as it is crucially
important which expression is on the left and which one is on the right side of the
“=” sign. The expression a = b

1. makes the state of the object a the same as that of the object b, and

2. evaluates to that assigned state.

The first is the side effect and the second is the value of the assignment expres-
sion. In the code

int i = 5; // declare an integer i, initializing it to 5
i = 10; // assign value 10 to that i

the assignment operator is called entirely for its side effect. Also note that the
assignment and initialization look deceptively similar. It is extremely important
to realize that initialization statement creates a new object with a specified initial
state, while an assignment expression alters the state of an existing object (and
evaluates to that new state).

Jumping ahead to the time when we will build our own classes, we can say that initial-
ization and assignment refer to two distinct aspects of object behavior — the first being
controlled by the constructor method, and the second — by the copy assignment operator.

An assignment expression evaluates to the expression being assigned, and thus
can be used in any function call expression — even including another assignment:

int i = 8;
int j = 10;
i = ( j = 7 );

It can surely result in unreadable code if used indiscriminately.
An lvalue can be used on the left or on the right side of an assignment, since

it has both a location and a value stored at that location24.
24Even though that value may be garbage.
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int i = 5;
int j = 7;
i = j; // lvalue i is on the left; lvalue j is on the right

Sometimes people pedantically describe the above evolution of j as an lvalue to
prvalue conversion, since strictly speaking the j first decays to its prvalue 7 and
only then that prvalue is assigned to i.

On the other hand, a prvalue cannot appear on the left side of an assignment
but can be used on the right:

int i;
i = 7; // okay: a prvalue 7 is on the right
7 = i; // WRONG: a prvalue 7 cannot be on the left
i + 3 = 7; // WRONG: a prvalue i + 3 cannot be on the left

2.2.11. CV Type Qualifiers

A declaration of an identifier may have a constant or volatile type qualifier.
These are known collectively as cv qualifiers .

A constant identifier must be explicitly initialized, and once initialized, the
object it refers to cannot change its state:

int main()
{

const int i; // error: uninitialized ‘const i’
const int i = 5; // OK
i = 7; // error: assignment of read-only variable ‘i’

}

It may be worth noting that the value of the constant does not have to be
known at compile time. In a sense, the constants known to compiler at compile
time (such as literals) are even “more constant” than the constants considered
above. C++11 provides a way to specify such constants:

constexpr int x = 5;

The volatile qualifier informs the compiler that the object’s state can be
changed by factors external to the code where it is declared (such as hardware,
other threads, or interrupt routines). While unaware of those externalities, with
this information the compiler will not optimize access to this object by, say, cashing
its value in a register for faster access.

2.2.12. Reference Declaration and Initialization

C++ has a unique concept of a reference declaration . There are two types of
such declarations: lvalue reference and rvalue reference . An lvalue reference
is indicated by the ampersand after the type declaration, and an rvalue reference
— by a double ampersand. For example, an integer lvalue and rvalue reference
declarations can start like this:
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int & r ... // lvalue reference declaration
int && rr ... // rvalue reference declaration

The magic of references comes into play only when an identifier of a reference type
is declared and initialized. A reference initialization creates an alias of the original
identifier, so that the original and the reference equally refer to the same object.

Let’s consider an example when an lvalue reference r is initialized with an
lvalue i:

int i = 5; // not a reference, just a normal integer
int & r = i; // r is now a reference to i

From that point on, the identifier r behaves like a stand-in for i:

int r = 7; // now i is also 7

Let’s think of identifiers as boxes and the values as the content of those boxes.
A regular initialization of an identifier with an expression — like the initialization
of i with 5 — places the value of that expression into that identifier’s box. On
the other hand, a reference initialization of an identifier with an lvalue expression
— like the initialization of r with i — creates a teleport tunnel connecting the
opening of the initializer box i with the bottom of the initialized box r. Thus,
both boxes — the initializer and the initialized — provide access to the same exact
content when they are opened.25 This metaphor should make it clear that taking
reference repeatedly, as in

int i = 5;
int & r = i;
int & rr = r;
rr = 10; // all three identifiers now refer to the same 10

does not produce a “reference to reference” — rr is just another reference to the
same old i and to r.

One possible point of confusion is the value category of references. Both lvalue
references and rvalue references are lvalue expressions themselves. They are clas-
sified as lvalue and rvalue not based on what they are, but based on what they
refer to. Another possibility for confusion stems from an unfortunate terminol-
ogy. A reference identifier, once declared and initialized, is no different from a
non-reference one. The word “reference” distinguishes not the identifier itself, but
its declaration. The true utility of reference declaration will manifest itself later
when we argument-to-parameter binding in functions and the move semantics .

For the sake of completeness, let’s consider all possible combinations of ref-
erence declarations to see what is legal and what is not. References must be
initialized at the time of their declaration:

25In principle, one can use an even simpler metaphor. Instead of “teleport tunnels”, think
of objects as boxes and their identifiers as labels slapped onto those boxes. Then a reference
declaration of an identifier is like putting the label with that identifier onto an existing box.
Even though it is more complicated, I find the tunnel metaphor more effective in illustrating
parameter-to-argument binding.
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int main()
{

int & nonconst_l_ref; //error:
// ‘nonconst_l_ref’ declared as reference
// but not initialized

const int & const_l_ref; //error:
// ‘const_l_ref’ declared as reference
// but not initialized

int && nonconst_r_ref; //error:
// ‘nonconst_r_ref’ declared as reference
// but not initialized

const int && const_r_ref; //error:
// ‘const_r_ref’ declared as reference
// but not initialized

}

An rvalue reference and a constant lvalue reference can be initialized with an
rvalue, but a non-constant lvalue reference cannot:

int main()
{

const int && const_r_ref = 10; // OK
int && nonconst_r_ref = 10; // OK
const int & const_l_ref = 10; // OK
int & nonconst_l_ref = 10; // error:
// cannot bind non-const lvalue reference of type ‘int&’
// to an rvalue of type ‘int’

}

When initializing references with a constant lvalue, only a constant lvalue
reference can get it as the initializing value; all other combinations will result in
errors:

int main()
{

const int const_lvalue = 20;

const int & const_l_ref = const_lvalue; // OK
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int & nonconst_l_ref = const_lvalue; // error:
// binding reference of type ‘int&’ to ‘const int’
// discards qualifiers

int && nonconst_r_ref = const_lvalue; // error:
// cannot bind rvalue reference of type ‘int&&’
// to lvalue of type ‘const int’

const int && const_r_ref = const_lvalue; // error:
// cannot bind rvalue reference of type ‘const int&&’
// to lvalue of type ‘const int’

}

Finally, lvalue references can be initialized with a non-constant lvalue, while
rvalue references cannot:

int main()
{

int nonconst_lvalue = 30;

int & nonconst_l_ref = nonconst_lvalue; // OK
const int & const_l_ref = nonconst_lvalue; // OK

int && nonconst_r_ref = nonconst_lvalue; // error:
// cannot bind rvalue reference of type ‘int&&’
// to lvalue of type ‘int’

const int && const_r_ref = nonconst_lvalue; // error:
// cannot bind rvalue reference of type ‘const int&&’
// to lvalue of type ‘int’

}

2.3. Functions

2.3.1. Function Definition

Functions are the most basic way of structuring code into smaller parts. Some
functions and operators26 are built-in (like the arithmetic operations on basic
numerical types). New functions can be defined. Let’s recall some related termi-
nology. A complete function definition may look like this:

int square( int i )
{

26Operators may be seen as functions written in a particular format, called the infix notation .



§2.3. Functions 19

return i * i;
}

where the first type declaration — in this case the int:
int square( int i )
{

return i * i;
}

is the return type ; what follows it — in this case the square:
int square( int i )
{

return i * i;
}

is the identifier , or — more colloquially — the name of the function; the paren-
thesized ordered list of parameter types — in this example the ( int ):

int square( int i )
{

return i * i;
}

is the signature ; the parenthesized ordered list of identifiers — in this case the i:
int square( int i )
{

return i * i;
}

is the parameter identifier (list): the part between the curly braces:
int square( int i )
{

return i * i;
}

is the body ; finally, the i * i:
int square( int i )
{

return i * i;
}

is the return expression .
The first line, with or without the parameter identifier(s), is the declaration

of the function, also called a forward declaration (of the function) or a function
prototype. It can appear, as a separate statement, by itself — without the body of
the function; in this case it is terminated by a semicolon:

int square ( int i ); // with parameter identifier
int square ( int ); // without parameter identifier

2.3.2. Function Call Expressions

While a function definition is a recipe describing how to do a task (i. e.
“this is how to square an integer number i”), a function call expression is an
order to go ahead and do that task (i. e. “now please go ahead and square this
particular number exactly as I described that process earlier”).
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Syntactically, a function call is the identifier of the function followed by the
parenthesized list of argument expressions . For example, calling the just de-
fined function square with the argument expression 3 + 5 will look like this:

square( 3 + 5 )
Like any other expression, a function call may

• have a value;

• have a side effect;

• appear in a larger expression.

The value of the function call expression is the value of the return
expression of the function:

int square( int i )
{

return i * i;
}
int main()
{

int x = 5;
int y = square( x ); // now y is 25

}

A function must be declared before it may be called. However, functions,
once declared in a file, can be used in that file right away:

int square( int ); // function declared but undefined
int main()
{

int x = 5;
int y = square( x ); // function can be used here

}
int square( int i ) // and defined elsewhere
{

return i * i;
}

Declared and used in a particular source file, a function does not have to be
defined in that file. All the compilation steps up to but not including linking27,
which process one individual source file at a time, will work just fine as long as
the functions being used in them are declared (but not necessarily defined) before
use. Only the linking step requires the definitions of all functions used.

All identifiers declared in the body of the function are not visible outside of
the function. They are called local variables .

Function parameters are positional.
27Namely, the preprocessing, compilation and assembly.
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int add_first_and_squared_second( int n, int m )
{

return n + m * m;
}
int main()
{

int a = add_first_and_squared_second( 1, 2 ); // a is 5
int b = add_first_and_squared_second( 2, 1 ); // b is 3

}

2.3.3. void Type in Functions

A function may have void as their return type. Void functions do not return
any value; they are called entirely for their side effect. In void functions, the
return statements are optional (and are implicitly inserted by the compiler at the
end of the body):

void greet( std::string given_name )
{

std::cout << "Hi " << given_name << "!\n";
}

If the return statements are used at all, they must have empty return expressions:

void fussy_greet( std::string given_name )
{

// I don't talk to mice
if( given_name == "Mickey Mouse" ) return;
// the above "return" has an empty return expression

// implicitly the rest of the function is the "else" part:
std::cout << "Hi " << given_name << "!\n";

}

A function can also have void signature, indicating that it does not take any in-
puts. However, the form func( void ) — even though legal — is usually replaced
by an equivalent shorter form func(), both in declarations and calls. Here is an
example of a complete program with a void function with void signature:

# include <iostream> // for cerr, cout
# include <cstdlib> // for exit
void die() // void function with void signature
{

std::cerr << "Usage: ./greet <name>\n";
exit( 1 );
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}
void greet( std::string given_name ) // void function
{

std::cout << "Hi " << given_name << "!\n";
}
int main( int argc, char **argv )
{

if( argc != 2 ) die();
greet( argv[ 1 ] );
return 0;

}

Note the use of the std::cerr in the die function. Unlike the usual output with std::cout
in the greet function, the std::cerr writes the error message about program’s intended
usage into the standard error instead of the standard output stream. When a program
is called on the command prompt, both the standard output and standard error are printed
on the terminal by default, but the user can separate them by turning one of them off or
redirecting either or both to a separate file.

Assuming that the executable of this program is called greet, interacting with
it will look like this:

user@computer:~$ ./greet
Usage: ./greet <name>
user@computer:~$ ./greet Mickey Mouse
Usage: ./greet <name>
user@computer:~$ ./greet "Mickey Mouse"
Hi Mickey Mouse!
user@computer:~$ ./greet Mickey
Hi Mickey!

2.3.4. Argument to Parameter Binding

When a function with parameters is called, implicit declaration and initializa-
tion of parameters take place. The arguments passed to the function are the ini-
tializers for the parameters in question. This is called argument-to-parameter
binding . Let’s go back to the code we considered earlier:

1 int square( int i )
2 {
3 return i * i;
4 }
5 int main()
6 {
7 int x = 5;
8 int y = square( x );
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9 }

When line 8 is executed, implicit initialization int i = x; happens before the
square() function is called into action. Thus, the value of i that square operates
on has nothing to do with the x in the main() function. The square operates on
a copy of x, not on x itself. So, for example, if we add line 3 to the above code:

1 int square( int i )
2 {
3 i = i + 1;
4 return i * i;
5 }
6 int main()
7 {
8 int x = 5;
9 int y = square( x ); // x is 5, y is 36

10 }

then at the end of the main() function, the value of x will still be 5. This behavior
of the parameter i is called call-by-value .

With this in mind, we can better appreciate one of the main uses of lvalue
references. Take the above code and add the reference declaration symbol & to the
square() function’s signature:

1 int square( int & i )
2 {
3 i = i + 1;
4 return i * i;
5 }
6 int main()
7 {
8 int x = 5;
9 int y = square( x ); // x is 6, y is 36

10 }

When line 9 is executed, the implicit initialization happens again, now taking
the form int & i = x; and saying that the i inside of the square refers to the
same entity as the x in the main(). In this case, any change to i done in the
square affects x in the main(). This behavior of the parameter i is called call-
by-reference .

2.3.5. Implicit Argument Coercion

In assignment and initialization, the value of the initializing expression is co-
erced into the type of the value being assigned or initialized.

Type coercion also happens in the implicit initializations taking place during
argument-to-parameter binding and return during a function call. The general
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rules of type coercion apply in this case as well: when expressions are formed
using functions and operators, the arguments of those functions and operations
are coerced into types accepted by those operations. Then — for user-constructed
functions and operators — the return value is coerced into the return type of the
function or operator being constructed.

For example, since many built-in arithmetic operators take int or double
numbers, all arguments having various shorter integer types (like char, short and
unsigned short) are implicitly promoted to int when used those operators:

# include <iostream>
int main()
{

std::cout << 'A' + 0; // promotion char{'A'}->int{65}
}

will print 65 instead of A.

2.3.6. Function Overloading

The same identifier can be used in function definitions with different signatures.
Effectively, those definitions create completely distinct and unrelated functions
that can, in principle, do completely different things. Thus, function’s identity
is tied to the combination of its identifier and its signature and not to
the identifier alone. Since the signature characterizes function’s inputs, functions
cannot be distinguished by their return type, i. e. the outputs. The use of the same
identifier for different functions is called function overloading . (In the strict
sense, overloading happens to the function’s identifier rather than the function
itself.)

When several functions with the same identifier exist, the version used for
specific arguments is selected based on the number and type of those arguments:

# include <iostream> // for cout
void greet()
{

std::cout << "Hello!\n";
}
void greet( int x )
{

std::cout << "I have an integer number " << x << "!\n";
}
int main()
{

greet(); // the first function is called
greet( 5 ); // the second function is called

}
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When several choices are present, they are selected in the following order of pref-
erence: exact match of the argument types, type promotion, type demotion. The
selection process fails when encountering ambiguity. Adding an overloaded func-
tion to an existing list of overloaded functions may introduce such an ambiguity
and thus result in a compiler error. For example, this version of main() will work
just fine with the above two greet functions:

int main()
{

greet( 5.7 ); // implicit type demotion double{5.7}->int{5}
}

but adding another potential candidate for type demotion — in this case greet(
short ) — will result in an error:

# include <iostream> // for cout
void greet()
{

std::cout << "Hello!\n";
}
void greet( int x )
{

std::cout << "I have an integer number " << x << "!\n";
}
void greet( short x )
{

std::cout << "I have a short int " << x << "!\n";
}
int main()
{

greet( 5.7 ); // error:
// call of overloaded ‘greet(double)’ is ambiguous

}

2.3.7. Function Templates

COME AGAIN LATER
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2.4. Expressions: Summary

2.4.1. What is an Expression?

This is an approximate, incomplete and imperfect attempt to summarize how
an expression must look like syntactically. The next section will address what
expressions mean semantically.

An expression is either a literal (e. g. 5), or an identifier (e. g. x), or a function
call28 applied to other — shorter — expressions (e. g. f(x)),

2.4.2. What You Must Know about Expressions

Consider this code snippet:

1 int main()
2 {
3 int x = 5;
4 int y = 7;
5 x = ( y++ );
6 // ...

I will use the expression on line 5 and the box-with-stuff metaphor to illustrate
the points made below. Every time you form an expression in C++ you
must know:

• the identity of the object it evaluates to, if any — i. e. the box the expression
selects (in the example, it is x) or lack thereof29;

• the state of the object it evaluates to, if any — i. e. the stuff, in the box or
by itself, the expression constructs (in the example, it is 7) or lack thereof30;

• the type of the object the expression evaluates to — i. e. the shape and form
of the stuff it describes (in the example, it is int)31;

• the side effects it produces, if any — i. e. the change in the content of
other boxes involved in its evaluation (in the example, it is the change of the
content of y from 7 to 8)32;

• the memory location of the object, if any — i. e. the place of the box in
the memory storage (in the example, it x is a local variable of the main()
function, thus residing on the stack in the stack frame of the main()) or lack
thereof;

28The word “function” is understood in the general sense which includes operators as well as
proper functions.

29What is the term describing the expressions that have no identity?
30What is the term describing the expressions that have no state?
31Even a prvalue has type, so the type characteristic is an attribute of both the box and the

stuff, even if that stuff is not in a box. Since the void expressions which neither construct stuff
nor select any box still have the void type, type is a mandatory characteristic of an expression,
so that every expression must have it.

32Give an example of expression without side effects.
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• the lifetime of the object — i. e. the span of time when the object the
expression evaluates to will exist and retain its identity (in the example, it
is the time from int x = ... declaration until main() function’s return);

• the visibility scope of the expression itself — i. e. the context in which this
expression has meaning (in the example, it is the section of the body of
main() from line 5 until the end);

• the cv type of the object the expression evaluates to — i. e. whether the box
is closed and sealed or open and whether a force external to our code can
change its content (in the example, x is neither constant nor volatile).

HOMEWORK: Answer all questions and address any requests made
in the footnotes to the above list. Which specific combination of the
above characteristics determines the value category of the expression?
Try to come up with examples of expressions illustrating each possible
combination of these characteristics.

2.4.3. In-Class Quiz

What will be the output of the following two programs?

Program 1.

# include <iostream>
int main()
{

int x = 5;
++(x++);
std::cout << "x = " << x << "\n";

}

Program 2.

# include <iostream>
int main()
{

int x = 5;
(++x)++;
std::cout << "x = " << x << "\n";

}

References allow us to re-implement the two increment operators33 from scratch:
33There will be a better — a more complete and faithful — way to do it, which we will explore

later.
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// ++x
int & pre_increment( int & x )
{

x = x + 1;
return x;

}

// x++
int post_increment( int & x )
{

int tmp = x;
x = x + 1;
return tmp;

}

so that the original quiz problem becomes:

Program 1.

# include <iostream>
// include the two function definitions from above
int main()
{

int x = 5;
pre_increment( post_increment( x ) );
std::cout << "x = " << x << "\n";

}

Program 2.

# include <iostream>
// include the two function definitions from above
int main()
{

int x = 5;
post_increment( pre_increment( x ) );
std::cout << "x = " << x << "\n";

}

This explication immediately shows that the first program will fail to compile
due to incompatibility of the input-output types. Indeed, the evaluation of the
inner post_increment( x ) results in an int prvalue output 5 (coming from
the tmp inside of post_increment function), which then becomes the initializer
value of the int & parameter of pre_increment function. But as we know from
section 2.2.12 (page 17), the implicit initialization int & x = 5 happening in
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pre_increment(...) function call will fail to compile since an lreference initial-
ization requires an lvalue as the initializer.

If we were to try fixing it with a reference return type:

int & post_increment( int & x )
{

int tmp = x;
x = x + 1;
return tmp;

}

we would immediately run into an even bigger problem. A function returning a
reference to its own local variable creates a teleport tunnel to nowhere since the
stack frame where that local variable (in this example tmp) resides is discarded
immediately after the return. Accessing that return value results in a segmentation
fault.

The second program will compile and run with the output x = 7. Here is the
full program:

# include <iostream>
// ++x
int & pre_increment( int & x )
{

x = x + 1;
return x;

}
// x++
//int & post_increment( int & x ) // Segmentation fault
int post_increment( int & x )
{

int tmp = x;
x = x + 1;
return tmp;

}
int main()
{

int x = 5;
//pre_increment( post_increment( x ) ); // error:
// cannot bind non-const lvalue reference of type ‘int&’
// to an rvalue of type ‘int’
post_increment( pre_increment( x ) ); // produces "x = 7"
std::cout << "x = " << x << "\n";

}
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2.5. Control Flow Statements

2.5.1. The if Statement

The if statement has the form

if( <condition> ) <statement>

and executes the <statement> if and only if the <condition> is true. It can
optionally include an alternative branch, as in

if( <condition> ) <statement 1>
else <statement 2>

and in that case the <statement 2> executes if and only if the <condition> is
false. A nested if...else construction may lead to the dangling else ambiguity,
since

if( <condition 1> )
if( <condition 2> ) <statement 1>
else <statement 2>

while meaning the same as

if( <condition 1> )
if( <condition 2> ) <body 1>

else <body 2>

seems to suggest a different execution flow. Whenever this ambiguity arises, use
curly braces to resolve it, making it clear to both a human reader and computer
whether you mean this:

if( <condition 1> ) {
if( <condition 2> ) <statement 1>
else <statement 2>

}

or that:

if( <condition 1> ) {
if( <condition 2> ) <statement 1>

}
else <statement 2>

Some style guides suggest consistent use of braces in all if...else statements
regardless of the number of sub-statements in any sub-branch, disavowing the
code like this:
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std::string letter grade( int score )
{

if( score >= 93 ) return "A";
if( score >= 90 ) return "A-";
if( score >= 87 ) return "B+";
if( score >= 83 ) return "B";
if( score >= 80 ) return "B-";
if( score >= 77 ) return "C+";
if( score >= 73 ) return "C";
if( score >= 70 ) return "C-";
if( score >= 67 ) return "D+";
if( score >= 60 ) return "D";
return "F";

}

I see it as a bit too extreme, but decide for yourself.

2.5.2. The switch Statement and break Command

A switch statement has the form

switch( <expression> ){
case <constant 1>:

<statement 1 1>
<statement 1 2>
...

case <constant 2>:
<statement 2 1>
<statement 2 2>
...

}

In the above, the <expression> must evaluate to some version of integer type,
while each of the <constant..>’s must be a compile time constant of the same
integer type. Each <constant i> is the place where the control flow jumps to
when the corresponding the <expression> equals the <constant i>. From that
point on, all the subsequent statements of the switch statement are executed. For
example, when daynum happens to be 5, the code

switch( daynum ){
case 1:

std::cout << "Monday\n";
case 2:

std::cout << "Tuesday\n";
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case 3:
std::cout << "Wednesday\n";

case 4:
std::cout << "Thursday\n";

case 5:
std::cout << "Friday\n";

case 6:
std::cout << "Saturday\n";

case 7:
std::cout << "Sunday\n";

}

will result in the console output

Friday
Saturday
Sunday

If the intended effect is to skip all the subsequent possibilities, a break command
can be used for exiting the switch statement: with the same value 5 for the
variable daynum, the code

switch( daynum ){
case 1:

std::cout << "Monday\n";
break;

case 2:
std::cout << "Tuesday\n";
break;

case 3:
std::cout << "Wednesday\n";
break;

case 4:
std::cout << "Thursday\n";
break;

case 5:
std::cout << "Friday\n";
break;

case 6:
std::cout << "Saturday\n";
break;

case 7:
std::cout << "Sunday\n";

}
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will result in the console output

Friday

If the <constant...>’s don’t cover all possible values of the integer type in ques-
tion, the compiler will34 give a warning35. All possible values can be handled by
a switch statement with a default clause:

switch( <value> ){
case <label 1>:

<statement 1 1>
<statement 1 2>
...

case <label 2>:
<statement 2 1>
<statement 2 2>
...

default:
<statement d 1>
<statement d 2>
...

}

For example:

switch( daynum ){
case 1:

std::cout << "Monday\n";
case 2:

std::cout << "Tuesday\n";
case 3:

std::cout << "Wednesday\n";
case 4:

std::cout << "Thursday\n";
case 5:

std::cout << "Friday\n";
case 6:

std::cout << "Saturday\n";
case 7:

std::cout << "Sunday\n";
default:

34with compilation key -Wall
35An integer type can have finitely many possible values when it is an enum type. In that case

it is possible to cover all cases with appropriate <constant...>’s.



34 Review

std::cout << "Not sure what you mean\n";
}

At least one sub-statement must be included in the switch, but that statement
can be just an empty “;”. The cases can be combined as in:

switch( daynum ){
case 1:

std::cout << "Monday\n";
break;

case 2:
std::cout << "Tuesday\n";
break;

case 3:
std::cout << "Wednesday\n";
break;

case 4:
std::cout << "Thursday\n";
break;

case 5:
std::cout << "Friday\n";
break;

case 6: // combining this case with the next
case 7:

std::cout << "Weekend\n";
default:

; // empty statement to avoid the compiler warning
}

2.5.3. Loops

All loops can include the break command in their <body>. The break effect
in a loop is the same as in a switch statement: it takes the control flow to the
place immediately after the loop. In addition, a single iteration of a loop can be
skipped with a continue command. The break and continue commands can
appear anywhere in the <body> of the loop.

while loop
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START

continuation
<condition>

<body>

landing
spot for

continue;

END
(also the

landing spot
for break;)

true

false

Figure 5. while( <condition> ){ <body> } flow chart.
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do...while loop

START

<body>

landing
spot for

continue;

continuation
<condition>

END
(also the

landing spot
for break;)

false

true

Figure 6. do{ <body> } while( <condition> ); flow chart.

for loop

<init>

START

continuation
<condition>

<body>

landing
spot for

continue;

<update>

END
(also the

landing spot
for break;)

true

false

Figure 7. for( <init>; <condition>; <update> ){ <body> } flow chart.
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2.6. Pointers

2.6.1. Address and Dereference Operators

# include <iostream> // for cerr, cout
# include <cstdint> // for uintptr_t
void allocate_and_report_int_on_stack()
{

// uniform (a.k.a. 'brace') initialization:
int my_int = int{4} + int{7};
int * my_int_ptr = & my_int;

// my_int_ptr == & my_int
// is equivalent to
// * my_int_ptr == my_int

std::cout
<< "*("
<< reinterpret_cast<uintptr_t>( my_int_ptr )
<< ") = " << my_int << " on the STACK"
<< " of the function " << __func__
<< "\nThe pointer size is " << sizeof( my_int_ptr )
<< ", the integer size is " << sizeof( my_int )
<< ".\n\n";

}
void allocate_and_report_int_on_heap()
{

int * ptr = new int{5}; // allocate on the heap
std::cout

<< "*("
<< reinterpret_cast<uintptr_t>( ptr )
<< ") = " << *ptr << " on the HEAP."
<< "\nThe pointer size is " << sizeof( ptr )
<< ", the integer size is " << sizeof( *ptr )
<< ".\n\n";

delete ptr; // free memory on the heap
ptr = nullptr; // just in case ptr is used below

}
void alert()
{

std::cout
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<< "\nPay attention to"
<< " which of the two pointers is bigger"
<< " and recall the virtual memory structure:\n\n";

}
int main()
{

alert();
allocate_and_report_int_on_heap();
allocate_and_report_int_on_stack();

}

2.6.2. Arrays

Multi-Dimensional Arrays

a[0]

a[0][0] a[0][1] a[0][2] a[0][3]

a[1]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2]

a[2][0] a[2][1] a[2][2] a[2][3]

Figure 8. Array int a[3][4] in memory.

2.6.3. C-Strings

A C-string is an array of the type char with at least one element being the
null character '\0'. Semantically, the content of the string is the sequence of
characters up to — but not including — the very first null character. This is
expressed by saying that C-strings are null-terminated.

For example, the string "Hello" will look like this in memory:

'H' 'e' 'l' 'l' 'o' '\0' . . . junk . . .

str

Figure 9. String "Hello" in memory, as a char array

72 101 108 108 111 0 . . . junk . . .

str

Figure 10. String "Hello" in memory, as an ASCII codes int array.
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String literals are C-strings located in the read-only portion of the static mem-
ory. Being addressable, string literals are an exception from the literals of other
types:

&"Hello"; // OK
&5; // WRONG

The address of the string literal (in static memory) is itself a constant pointer to
char and can be stored to a variable like this:

const char * str = "Hello";

In the above, the string literal array effectively decays to the pointer on the left
hand side.

A string literal can also be used for array initialization (which is one of the few
cases36 when an array does not decay into a pointer):

const char str[] = "Hello";

In the array initialization, the original string literal is copied into its new location,
and the initialized array is automatically allocated with the length equal to the
string length in characters plus one extra space for the null character. In other
words, the memory representation depicted above for the example of "Hello" will
have no trailing junk, and the following code:

# include <iostream>
int main()
{

const char str[] = "Hello";
std::cout << sizeof(str)/sizeof(str[0]) << "\n";

}

will output 6 on the console. Note that

const char * str = "Hello";

also makes sense, but means something else. Can you guess the output of the
following code?

# include <iostream>
int main()
{

const char * str = "Hello";
std::cout << sizeof(str)/sizeof(str[0]) << "\n";

}

If we go over the array size:
36Besides the sizeof and &.
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# include <iostream>
int main()
{

const char str[] = "Hello";
for( int i = 0; i < 10; i++ )

std::cout << "'" << str[i] << "', ";

}

we will see something like

'H', 'e', 'l', 'l', 'o', '', '...', '...', '...', '...',

while

# include <iostream>

int main()
{

const char str[] = "Hello";
for( int i = 0; i < 10; i++ )

std::cout << static_cast<int>( str[i] ) << ", ";

}

will produce

72, 101, 108, 108, 111, 0, ..., ..., ..., ...,

In the above console outputs, the ellipsis “...” indicates the particular junk that
happens to be stored on your machine after the array in question.

2.6.4. The main() Function Revisited

As mentioned earlier, every standalone C and C++ program must contain a
definition of a function called main(). When the program’s executable is called,
the system (in our case, the console) will call the main().

One can think that the main() function declaration is implicitly built-in. Fur-
thermore, there are two signatures possible, so, in a sense, main() is overloaded.
The declaration of the first variant is

int main();

and the second one looks like this:

int main( int, char ** );
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Both versions of the main() function have an int return type, describing the
return value that is (typically) given back to the system37 and not to some other
part of our code. For this reason, the return value of main() is often called the exit
code of the program. If the return value of the main() function is not explicitly
provided in the code, the compiler assumes that there is a return 0; statement
at the end of main() body. So, for example,

int main()
{

std::cout << "Hello world!\n";
}

is interpreted by the compiler as

int main()
{

std::cout << "Hello world!\n";
return 0;

}

By tradition, 0 is the “success” exit code, signaling to the outside world that the
program executed as intended and encountered no errors.

The variant of the main() function that take input parameters will be con-
sidered in the next section. Since (in the usual situation) the function main() is
called by forces external to our code, the parameters themselves must come from
outside as well.

2.6.5. Command Line Arguments

An executable run on a console using command line may be given additional
command line arguments . Those arguments are strings of characters separated
by (one or more) space symbols. If a single command line argument needs to
include a space character within, that whole argument must be in (single or double)
quotes. For example, an executable named main can be called with command line
arguments “Hello!”, “The Answer is”, and “42” like this:

user@computer:~$ ./main Hello! "The Answer is" 42

If an argument string needs to include a quote of the same type that was used for
enclosing that string, it must be escaped using the backslash symbol:

user@computer:~$ ./main "I contain the double quote \" symbol."

When the system loads the executable and calls its main() function, it passes
two arguments to it. The first is an integer specifying the total count of the
command line arguments. (Traditionally it is denoted argc, although you can use
any other identifier.) The second argument (traditionally denoted argv) is a bit

37To be more precise, to the system process that called the executable of our program. In
most cases in this class it will be the console process.
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more complicated. Roughly speaking, it is an array of C-strings, with each string
representing a single command line argument. But because of the array-to-pointer
decay in function calls, that array of C-strings turns into a pointer to pointer to
char. In addition, that array of pointers is itself terminated by NULL pointer, and
for that reason, the argc is one less than the length of argv. The name of the
executable itself is the 0-th element of the arguments array. To use these two
arguments in C++ code, the main() function must include them in its signature:

# include <iostream>
int main( int argc, char **argv )
{

std::cout
<< "This program was called with "
<< argc << " arguments:\n";

for( int i = 0; i < argc; i++ )
std::cout

<< "\targument " << i
<< " = " << argv[ i ] << "\n";

return 0;
}

If the executable of the above program is named main and is called using the
command line

user@computer:~$ ./main Hello! "The Answer is" 42

the call will result in the following argv array:

argv[0]

argv[1]

argv[2]

argv[3]

NULL

./main\0

Hello!\0

The Answer is\0

42\0

argv

Figure 11. The structure of command line arguments for
./main Hello! "The Answer is" 42

and, consequently, will produce the following output:

user@computer:~$ ./main Hello! "The Answer is" 42
This program was called with 4 arguments:

argument 0 = ./main
argument 1 = Hello!
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argument 2 = The Answer is
argument 3 = 42
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